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Abstract
The popularity of automatic speech recognition (ASR)

systems, like Google Assistant, Cortana, brings in secu-

rity concerns, as demonstrated by recent attacks. The

impacts of such threats, however, are less clear, since they

are either less stealthy (producing noise-like voice com-

mands) or requiring the physical presence of an attack

device (using ultrasound speakers or transducers). In this

paper, we demonstrate that not only are more practical and

surreptitious attacks feasible but they can even be auto-
matically constructed. Specifically, we find that the voice

commands can be stealthily embedded into songs, which,

when played, can effectively control the target system

through ASR without being noticed. For this purpose, we

developed novel techniques that address a key technical

challenge: integrating the commands into a song in a way

that can be effectively recognized by ASR through the

air, in the presence of background noise, while not being

detected by a human listener. Our research shows that this

can be done automatically against real world ASR applica-

tions1. We also demonstrate that such CommanderSongs
can be spread through Internet (e.g., YouTube) and radio,

potentially affecting millions of ASR users. Finally we

present mitigation techniques that defend existing ASR

systems against such threat.

1 Introduction

Intelligent voice control (IVC) has been widely used in

human-computer interaction, such as Amazon Alexa [1],

Google Assistant [6], Apple Siri [3], Microsoft Cor-

tana [14] and iFLYTEK [11]. Running the state-of-

the-art ASR techniques, these systems can effectively

interpret natural voice commands and execute the cor-

responding operations such as unlocking the doors of

∗Corresponding author: chenkai@iie.ac.cn
1Demos of attacks are uploaded on the website

(https://sites.google.com/view/commandersong/)

home or cars, making online purchase, sending mes-

sages, and etc. This has been made possible by recent

progress in machine learning, deep learning [31] in par-

ticular, which vastly improves the accuracy of speech

recognition. In the meantime, these deep learning tech-

niques are known to be vulnerable to adversarial perturba-

tions [37, 21, 27, 25, 20, 49, 28, 44]. Hence, it becomes

imperative to understand the security implications of the

ASR systems in the presence of such attacks.

Threats to ASR Prior research shows that carefully-

crafted perturbations, even a small amount, could cause a

machine learning classifier to misbehave in an unexpected

way. Although such adversarial learning has been exten-

sively studied in image recognition, little has been done in

speech recognition, potentially due to the new challenge

in this domain: unlike adversarial images, which include

the perturbations of less noticeable background pixels,

changes to voice commands often introduce noise that a

modern ASR system is designed to filter out and therefore

cannot be easily misled.

Indeed, a recent attack on ASR utilizes noise-like hid-

den voice command [22], but the white box attack is

based on a traditional speech recognition system that uses

a Gaussian Mixture Model (GMM), not the DNN behind

today’s ASR systems. Another attack transmits inaudible

commands through ultrasonic sound [53], but it exploits

microphone hardware vulnerabilities instead of the weak-

nesses of the DNN. Moreover, an attack device, e.g., an

ultrasonic transducer or speaker, needs to be placed close

to the target ASR system. So far little success has been

reported in generating “adversarial sound” that practically

fools deep learning technique but remains inconspicu-

ous to human ears, and meanwhile allows it to be played

from the remote (e.g., through YouTube) to attack a large

number of ASR systems.

To find practical adversarial sound, a few technical

challenges need to be addressed: (C1) the adversarial au-

dio sample is expected to be effective in a complicated,

real-world audible environment, in the presence of elec-



tronic noise from speaker and other noises; (C2) it should

be stealthy, unnoticeable to ordinary users; (C3) impactful

adversarial sound should be remotely deliverable and can

be played by popular devices from online sources, which

can affect a large number of IVC devices. All these chal-

lenges have been found in our research to be completely

addressable, indicating that the threat of audio adversarial

learning is indeed realistic.

CommanderSong. More specifically, in this paper, we

report a practical and systematic adversarial attack on

real world speech recognition systems. Our attack can

automatically embed a set of commands into a (randomly

selected) song, to spread to a large amount of audience

(addressing C3). This revised song, which we call Com-
manderSong, can sound completely normal to ordinary

users, but will be interpreted as commands by ASR, lead-

ing to the attacks on real-world IVC devices. To build

such an attack, we leverage an open source ASR sys-

tem Kaldi [13], which includes acoustic model and lan-

guage model. By carefully synthesizing the outputs of the

acoustic model from both the song and the given voice

command, we are able to generate the adversarial audio

with minimum perturbations through gradient descent, so

that the CommanderSong can be less noticeable to hu-

man users (addressing C2, named WTA attack). To make

such adversarial samples practical, our approach has been

designed to capture the electronic noise produced by dif-

ferent speakers, and integrate a generic noise model into

the algorithm for seeking adversarial samples (addressing

C1, called WAA attack).

In our experiment, we generated over 200 Comman-

derSongs that contain different commands, and attacked

Kaldi with an 100% success rate in a WTA attack and a

96% success rate in a WAA attack. Our evaluation further

demonstrates that such a CommanderSong can be used to

perform a black box attack on a mainstream ASR system

iFLYTEK2 [11] (neither source code nor model is avail-

able). iFLYTEK has been used as the voice input method

by many popular commercial apps, including WeChat (a

social app with 963 million users), Sina Weibo (another

social app with 530 million users), JD (an online shop-

ping app with 270 million users), etc. To demonstrate the

impact of our attack, we show that CommanderSong can

be spread through YouTube, which might impact millions

of users. To understand the human perception of the at-

tack, we conducted a user study3 on Amazon Mechanical

Turk [2]. Among over 200 participants, none of them

identified the commands inside our CommanderSongs.

We further developed the defense solutions against this

attack and demonstrated their effectiveness.

2We have reported this to iFLYTEK, and are waiting for their re-

sponses.
3The study is approved by the IRB.

Contributions. The contributions of this paper are sum-

marized as follows:

• Practical adversarial attack against ASR systems. We

designed and implemented the first practical adversarial

attacks against ASR systems. Our attack is demonstrated

to be robust, working across air in the presence of en-

vironmental interferences, transferable, effective on a

black box commercial ASR system (i.e., iFLYTEK) and

remotely deliverable, potentially impacting millions of

users.

• Defense against CommanderSong. We design two ap-

proaches (audio turbulence and audio squeezing) to de-

fend against the attack, which proves to be effective by

our preliminary experiments.

Roadmap. The rest of the paper is organized as fol-

lows: Section 2 gives the background information of our

study. Section 3 provides motivation and overviews our

approach. In Section 4, we elaborate the design and imple-

mentation of CommanderSong. In Section 5, we present

the experimental results, with emphasis on the difference

between machine and human comprehension. Section 6

investigates deeper understanding on CommanderSongs.

Section 7 shows the defense of the CommanderSong at-

tack. Section 8 compares our work with prior studies and

Section 9 concludes the paper.

2 Background

In this section, we overview existing speech recognition

system, and discuss the recent advance on the attacks

against both image and speech recognition systems.

2.1 Speech Recognition
Automatic speech recognition is a technique that allows

machines to recognize/understand the semantics of hu-

man voice. Besides the commercial products like Amazon

Alexa, Google Assistant, Apple Siri, iFLYTEK, etc., there

are also open-source platforms such as Kaldi toolkit [13],

Carnegie Mellon University’s Sphinx toolkit [5], HTK

toolkit [9], etc. Figure 1 presents an overview of a typical

speech recognition system, with two major components:

feature extraction and decoding based on pre-trained mod-

els (e.g., acoustic models and language models).

After the raw audio is amplified and filtered, acoustic

features need to be extracted from the preprocessed au-

dio signal. The features contained in the signal change

significantly over time, so short-time analysis is used to

evaluate them periodically. Common acoustic feature

extraction algorithms include Mel-Frequency Cepstral

Coefficients (MFCC) [40], Linear Predictive Coefficient

(LPC) [34], Perceptual Linear Predictive (PLP) [30], etc.

Among them, MFCC is the most frequently used one in
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Figure 1: Architecture of Automatic Speech Recognition System.

both open source toolkit and commercial products [42].

GMM can be used to analyze the property of the acous-

tic features. The extracted acoustic features are matched

against pre-trained acoustic models to obtain the likeli-

hood probability of phonemes. Hidden Markov Models

(HMM) are commonly used for statistical speech recogni-

tion. As GMM is limited to describe a non-linear mani-

fold of the data, Deep Neural Network-Hidden Markov

Model (DNN-HMM) has been widely used for speech

recognition in academic and industry community since

2012 [32].

Recently, end-to-end deep learning becomes used in

speech recognition systems. It applies a large scale

dataset and uses CTC (Connectionist Temporal Classi-

fication) loss function to directly obtain the characters

rather than phoneme sequence. CTC locates the align-

ment of text transcripts with input speech using an all-

neural, sequence-to-sequence neural network. Traditional

speech recognition systems involve many engineered pro-

cessing stages, while CTC can supersede these processing

stages via deep learning [17]. The architecture of end-to-

end ASR systems always includes an encoder network

corresponding to the acoustic model and a decoder net-

work corresponding to the language model [47]. Deep-

Speech [17] and Wav2Letter [24] are popular open source

end-to-end speech recognition systems.

2.2 Existing Attacks against Image and
Speech Recognition Systems

Nowadays people are enjoying the convenience of in-

tegrating image and speech as new input methods into

mobile devices. Hence, the accuracy and dependability of

image and speech recognition pose critical impact on the

security of such devices. Intuitively, the adversaries can

compromise the integrity of the training data if they have

either physical or remote access to it. By either revising

existing data or inserting extra data in the training dataset,

the adversaries can certainly tamper the dependability of

the trained models [38].

When adversaries do not have access to the training

data, attacks are still possible. Recent research has been

done to deceive image recognition systems into making

wrong decision by slightly revising the input data. The

fundamental idea is to revise an image slightly to make

it “look” different from the views of human being and

machines. Depending on whether the adversary knows

the algorithms and parameters used in the recognition sys-

tems, there exist white box and black box attacks. Note

that the adversary always needs to be able to interact

with the target system to observe corresponding output

for any input, in both white and black box attacks. Early

researches [50, 48, 19] focus on the revision and gener-

ation of the digital image file, which is directly fed into

the image recognition systems. The state-of-the-art re-

searches [37, 21, 27] advance in terms of practicality by

printing the adversarial image and presenting it to a device

with image recognition functionality.

However, the success of the attack against image recog-

nition systems has not been ported to the speech recogni-

tion systems until very recently, due to the complexity of

the latter. The speech, a time-domain continuous signal,

contains much more features compared to the static im-

ages. Hidden voice command [22] launched both black

box (i.e., inverse MFCC) and white box (i.e., gradient de-

cent) attacks against speech recognition systems, and gen-

erated obfuscated commands to ASR systems. Though

seminal in attacking speech recognition systems, it is

also limited to make practical attacks. For instance, a

large amount of human effort is involved as feedback for

the black box approach, and the white box approach is

based on GMM-based acoustic models, which have been

replaced by DNN-based ones in most modern speech

recognition systems. The recent work DolphinAttack [53]

proposed a completely inaudible voice attack by modu-

lating commands on ultrasound carriers and leveraging

microphone vulnerabilities (i.e., the nonlinearity of the

microphones). As noted by the authors, such attack can be

eliminated by an enhanced microphone that can suppress

acoustic signals on ultrasound carrier, like iPhone 6 Plus.

3 Overview

In this section, we present the motivation of our work, and

overview the proposed approach to generate the practical

adversarial attack.

3.1 Motivation
Recently, adversarial attacks on image classification have

been extensively studied [21, 27]. Results show that even

the state-of-the-art DNN-based classifier can be fooled

by small perturbations added to the original image [37],

producing erroneous classification results. However, the



impact of adversarial attacks on the most advanced speech

recognition systems, such as those integrating DNN mod-

els, has never been systematically studied. Hence, in this

paper, we investigated DNN-based speech recognition

systems, and explored adversarial attacks against them.

Researches show that commands can be transmitted to

IVC devices through inaudible ultrasonic sound [53] and

noises [22]. Even though the existing works against ASR

systems are seminal, they are limited in some aspects.

Specifically, ultrasonic sound can be defeated by using

a low-pass filter (LPF) or analyzing the signal frequency

range, and noises are easy to be noticed by users.

Therefore, the research in this paper is motivated by

the following questions: (Q1) Is it possible to build the

practical adversarial attack against ASR systems, given

the facts that the most ASR systems are becoming more

intelligent (e.g., by integrating DNN models) and that the

generated adversarial samples should work in the very

complicated physical environment, e.g., electronic noise

from speaker, background noise, etc.? (Q2) Is it feasible

to generate the adversarial samples (including the target

commands) that are difficult, or even impossible, to be

noticed by ordinary users, so the control over the ASR

systems can happen in a “hidden” fashion? (Q3) If such

adversarial audio samples can be produced, is it possible

to impact a large amount of victims in an automated way,

rather than solely relying on attackers to play the adver-

sarial audio and affecting victims nearby? Below, we will

detail how our attack is designed to address the above

questions.

3.2 The Philosophy of Designing Our At-
tack

To address Q3, our idea is to choose songs as the “carrier”

of the voice commands recognizable by ASR systems.

The reason of choosing such “carrier” is at least two-fold.

On one hand, enjoying songs is always a preferred way for

people to relax, e.g., listening to the music station, stream-

ing music from online libraries, or just browsing YouTube

for favorite programs. Moreover, such entertainment is

not restricted by using radio, CD player, or desktop com-

puter any more. A mobile device, e.g., Android phone or

Apple iPhone, allows people to enjoy songs everywhere.

Hence, choosing the song as the “carrier” of the voice

command automatically helps impact millions of people.

On the other hand, “hiding” the desired command in the

song also makes the command much more difficult to be

noticed by victims, as long as Q2 can be reasonably ad-

dressed. Note that we do not rely on the lyrics in the song

to help integrate the desired command. Instead, we intend

to avoid the songs with the lyrics similar to our desired

command. For instance, if the desired command is “open

the door”, choosing a song with the lyrics of “open the

door” will easily catch the victims’ attention. Hence, we

decide to use random songs as the “carrier” regardless of

the desired commands.

Actually choosing the songs as the “carrier” of desired

commands makes Q2 even more challenging. Our basic

idea is when generating the adversarial samples, we revise

the original song leveraging the pure voice audio of the

desired command as a reference. In particular, we find the

revision of the original song to generate the adversarial

samples is always a trade off between preserving the

fidelity of the original song and recognizing the desired

commands from the generated sample by ASR systems.

To better obfuscate the desired commands in the song,

in this paper we emphasize the former than the latter.

In other words, we designed our revision algorithm to

maximally preserve the fidelity of the original song, at

the expense of losing a bit success rate of recognition of

the desired commands. However, such expense can be

compensated by integrating the same desired command

multiple times into one song (the command of “open the

door” may only last for 2 seconds.), and the successful

recognition of one suffices to impact the victims.

Technically, in order to address Q2, we need to investi-

gate the details of an ASR system. As shown in Figure 1,

an ASR system is usually composed of two pre-trained

models: an acoustic model describing the relationship

between audio signals and phonetic units, and a language

model representing statistical distributions over sequences

of words. In particular, given a piece of pure voice audio

of the desired command and a “carrier” song, we can feed

them into an ASR system separately, and intercept the

intermediate results. By investigating the output from the

acoustic model when processing the audio of the desired

command, and the details of the language model, we can

conclude the “information” in the output that is necessary

for the language model to produce the correct text of the

desired command. When we design our approach, we

want to ensure such “information” is only a small subset

(hopefully the minimum subset) of the output from the

acoustic model. Then, we carefully craft the output from

the acoustic model when processing the original song, to

make it “include” such “information” as well. Finally,

we inverse the acoustic model and the feature extraction

together, to directly produce the adversarial sample based

on the crafted output (with the “information” necessary

for the language model to produce the correct text of the

desired command).

Theoretically, the adversarial samples generated above

can be recognized by the ASR systems as the desired

command if directly fed as input to such systems. Since

such input usually is in the form of a wave file (in “WAV”

format) and the ASR systems need to expose APIs to

accept the input, we define such attack as the WAV-To-

API (WTA) attack. However, to implement a practical



Figure 2: Result of decoding “Echo”.

attack as in Q1, the adversarial sample should be played

by a speaker to interact with IVC devices over the air. In

this paper, we define such practical attack as WAV-Air-

API (WAA) attack. The challenge of the WAA attack is

when playing the adversarial samples by a speaker, the

electronic noise produced by the loudspeakers and the

background noise in the open air have significant impact

on the recognition of the desired commands from the ad-

versarial samples. To address this challenge, we improve

our approach by integrating a generic noise model to the

above algorithm with the details in Section 4.3.

4 Attack Approach

We implement our attack by addressing two technical

challenges: (1) minimizing the perturbations to the song,

so the distortion between the original song and the gener-

ated adversarial sample can be as unnoticeable as possible,

and (2) making the attack practical, which means Com-

manderSong should be played over the air to compromise

IVC devices. To address the first challenge, we proposed

pdf-id sequence matching to incur minimum revision at

the output of the acoustic model, and use gradient de-

scent to generate the corresponding adversarial samples

as in Section 4.2. The second challenge is addressed by

introducing a generic noise model to simulate both the

electronic noise and background noise as in Section 4.3.

Below we elaborate the details.

4.1 Kaldi Platform
We choose the open source speech recognition toolkit

Kaldi [13], due to its popularity in research community.

Its source code on github obtains 3,748 stars and 1,822

forks [4]. Furthermore, the corpus trained by Kaldi on

“Fisher” is also used by IBM [18] and Microsoft [52].

In order to use Kaldi to decode audio, we need a trained

model to begin with. There are some models on Kaldi

website that can be used for research. We took advan-

Table 1: Relationship between transition-id and pdf-id.

Phoneme HMM-
state

Pdf-
id

Transition-
id Transition

ehB 0 6383
15985 0→1

15986 0→2

ehB 1 5760
16189 self-loop

16190 1→2

kI 0 6673
31223 0→1

31224 0→2

kI 1 3787
31379 self-loop

31380 1→2

owE 0 5316
39643 0→1

9644 0→2

owE 1 8335
39897 self-loop

39898 1→2

tage of the “ASpIRE Chain Model” (referred as “ASpIRE

model” in short), which was one of the latest released

decoding models when we began our study4. After man-

ually analyzing the source code of Kaldi (about 301,636

lines of shell scripts and 238,107 C++ SLOC), we com-

pletely explored how Kaldi processes audio and decodes

it to texts. Firstly, it extracts acoustic features like MFCC

or PLP from the raw audio. Then based on the trained

probability density function (p.d.f.) of the acoustic model,

those features are taken as input to DNN to compute the

posterior probability matrix. The p.d.f. is indexed by the

pdf identifier (pdf-id), which exactly indicates the column

of the output matrix of DNN.

Phoneme is the smallest unit composing a word. There

are three states (each is denoted as an HMM state) of

sound production for each phoneme, and a series of tran-

sitions among those states can identify a phoneme. A

transition identifier (transition-id) is used to uniquely iden-

tify the HMM state transition. Therefore, a sequence of

transition-ids can identify a phoneme, so we name such a

sequence as phoneme identifier in this paper. Note that the

transition-id is also mapped to pdf-id. Actually, during the

procedure of Kaldi decoding, the phoneme identifiers can

be obtained. By referring to the pre-obtained mapping be-

tween transition-id and pdf-id, any phoneme identifier can

also be expressed as a specific sequence of pdf-ids. Such a

specific sequence of pdf-ids actually is a segment from the

posterior probability matrix computed from DNN. This

implies that to make Kaldi decode any specific phoneme,

we need to have DNN compute a posterior probability

matrix containing the corresponding sequence of pdf-ids.

4There are three decoding models on Kaldi platform currently. AS-

pIRE Chain Model we used in this paper was released on October 15th,

2016, while SRE16 Xvector Model was released on October 4th, 2017,

which was not available when we began our study. The CVTE Mandarin

Model, released on June 21st 2017 was trained in Chinese [13].



To illustrate the above findings, we use Kaldi to process

a piece of audio with several known words, and obtain the

intermediate results, including the posterior probability

matrix computed by DNN, the transition-ids sequence,

the phonemes, and the decoded words. Figure 2 demon-

strates the decoded result of Echo, which contains three

phonemes. The red boxes highlight the id representing the

corresponding phoneme, and each phoneme is identified

by a sequence of transition-ids, or the phoneme identifiers.

Table 1 is a segment from the the relationship among the

phoneme, pdf-id, transition-id, etc. By referring to Ta-

ble 1, we can obtain the pdf-ids sequence corresponding

to the decoded transition-ids sequence5. Hence, for any

posterior probability matrix demonstrating such a pdf-ids

sequence should be decoded by Kaldi as ehB.

4.2 Gradient Descent to Craft Audio
Figure 3 demonstrates the details of our attack approach.

Given the original song x(t) and the pure voice audio of

the desired command y(t), we use Kaldi to decode them

separately. By analyzing the decoding procedures, we

can get the output of DNN matrix A of the original song

(Step 1© in Figure 3) and the phoneme identifiers of the

desired command audio (Step 4© in Figure 3).

The DNN’s output A is a matrix containing the prob-

ability of each pdf-id at each frame. Suppose there are

n frames and k pdf-ids, let ai, j (1 ≤ i ≤ n,1 ≤ j ≤ k) be

the element at the ith row and jth column in A. Then ai, j
represents the probability of the jth pdf-id at frame i. For

each frame, we calculate the most likely pdf-id as the one

with the highest probability in that frame. That is,

mi = argmax
j

ai, j.

Let m = (m1,m2, . . . ,mn). m represents a sequence of

most likely pdf-ids of the original song audio x(t). For

simplification, we use g to represent the function that

takes the original audio as input and outputs a sequence

of most likely pdf-ids based on DNN’s predictions. That

is,

g(x(t)) = m.

As shown in Step 5© in Figure 3, we can extract a

sequence of pdf-id of the command b = (b1,b2, . . . ,bn),
where bi (1≤ i≤ n) represents the highest probability pdf-

id of the command at frame i. To have the original song

decoded as the desired command, we need to identify the

minimum modification δ (t) on x(t) so that m is same

or close to b. Specifically, we minimize the L1 distance

between m and b. As m and b are related with the pdf-

id sequence, we define this method as pdf-id sequence
matching algorithm.

5For instance, the pdf-ids sequence for ehB should be 6383, 5760,
5760, 5760, 5760, 5760, 5760, 5760, 5760, 5760.

Based on these observations we construct the following

objective function:

argmin
δ (t)

‖g(x(t)+δ (t))−b‖1. (1)

To ensure that the modified audio does not deviate too

much from the original one, we optimize the objective

function Eq (1) under the constraint of |δ (t)| ≤ l.
Finally, we use gradient descent [43], an iterative opti-

mization algorithm to find the local minimum of a func-

tion, to solve the objective function. Given an initial point,

gradient descent follows the direction which reduces the

value of the function most quickly. By repeating this pro-

cess until the value starts to remain stable, the algorithm

is able to find a local minimum value. In particular, based

on our objective function, we revise the song x(t) into

x′(t) = x(t)+ δ (t) with the aim of making most likely

pdf-ids g(x′(t)) equal or close to b. Therefore, the crafted

audio x′(t) can be decoded as the desired command.

To further preserve the fidelity of the original song, one

method is to minimize the time duration of the revision.

Typically, once the pure command voice audio is gen-

erated by a text-to-speech engine, all the phonemes are

determined, so as to the phoneme identifiers and b. How-

ever, the speed of the speech also determines the number

of frames and the number of transition-ids in a phoneme

identifier. Intuitively, slow speech always produces re-

peated frames or transition-ids in a phoneme. Typically

people need six or more frames to realize a phoneme, but

most speech recognition systems only need three to four

frames to interpret a phoneme. Hence, to introduce the

minimal revision to the original song, we can analyze b,

reduce the number of repeated frames in each phoneme,

and obtain a shorter b′ = (b1,b2, . . . ,bq), where q < n.

4.3 Practical Attack over the Air
By feeding the generated adversarial sample directly into

Kaldi, the desired command can be decoded correctly.

However, playing the sample through a speaker to physi-

cally attack an IVC device typically cannot work. This is

mainly due to the noises introduced by the speaker and en-

vironment, as well as the distortion caused by the receiver

of the IVC device. In this paper, we do not consider the

invariance of background noise in different environments,

e.g., grocery, restaurant, office, etc., due to the following

reasons: (1) In a quite noisy environment like restaurant

or grocery, even the original voice command y(t) may

not be correctly recognized by IVC devices; (2) Model-

ing any slightly variant background noise itself is still an

open research problem; (3) Based on our observation, in

a normal environment like home, office, lobby, the major

impacts on the physical attack are the electronic noise

from the speaker and the distortion from the receiver of

the IVC devices, rather than the background noise.



Figure 3: Steps of attack.

Hence, our idea is to build a noise model, considering

the speaker noise, the receiver distortion, as well as the

generic background noise, and integrate it in the approach

in Section 4.2. Specifically, we carefully picked up several

songs and played them through our speaker in a very quiet

room. By comparing the recorded audio (captured by our

receiver) with the original one, we can capture the noises.

Note that playing “silent” audio does not work since the

electronic noise from speakers may depend on the sound

at different frequencies. Therefore, we intend to choose

the songs that cover more frequencies. Regarding the

comparison between two pieces of audio, we have to first

manually align them and then compute the difference.

We redesign the objective function as shown in Eq (2).

argmin
μ(t)

‖g(x(t)+μ(t)+n(t))−b‖1, (2)

where μ(t) is the perturbation that we add to the original

song, and n(t) is the noise samples that we captured. In

this way, we can get the adversarial audio x′(t) = x(t)+
μ(t) that can be used to launch the practical attack over

the air.

Such noise model above is quite device-dependent.

Since different speakers and receivers may introduce dif-

ferent noises/distortion when playing or receiving specific

audio, x′(t) may only work with the devices that we use to

capture the noise. To enhance the robustness of x′(t), we

introduce random noise, which is shown in Eq (3). Here,

the function rand() returns an vector of random numbers

in the interval (-N,N), which is saved as a “WAV” format

file to represent n(t). Our evaluation results show that

this approach can make the adversarial audio x′(t) robust

enough for different speakers and receivers.

n(t) = rand(t), |n(t)|<= N. (3)

5 Evaluation

In this section, we present the experimental results of

CommanderSong. We evaluated both the WTA and

WAA attacks against machine recognition. To eval-

uate the human comprehension, we conducted a sur-

vey examining the effects of “hiding” the desired com-

mand in the song. Then, we tested the transferability

of the adversarial sample on other ASR platforms, and

checked whether CommanderSong can spread through

Internet and radio. Finally, we measured the effi-

ciency in terms of the time to generate the Comman-

derSong. Demos of attacks are uploaded on the website

(https://sites.google.com/view/commandersong/).

5.1 Experiment Setup

The pure voice audio of the desired commands can be gen-

erated by any Text-To-Speech (TTS) engine (e.g., Google

text-to-speech [7], etc.) or recording human voice, as long

as it can be correctly recognized by Kaldi platform. We

also randomly downloaded 26 songs from the Internet. To

understand the impact of using different types of songs

as the carrier, we intended to choose songs from different

categories, i.e., popular, rock, rap, and soft music. Re-

garding the commands to inject, we chose 12 commonly

used ones such as “turn on GPS”, “ask Capital One to

make a credit card payment”, etc., as shown in Table 2.

Regarding the computing environment, one GPU server

(1075MHz GPU with 12GB memory, and 512GB hard

drive) was used.



Table 2: WTA attack results.

Command Success rate (%) SNR (dB) Efficiency (frames/hours)
Okay google restart phone now. 100 18.6 229/1.3

Okay google flashlight on. 100 14.7 219/1.3

Okay google read mail. 100 15.5 217/1.5

Okay google clear notification. 100 14 260/1.2

Okay google good night. 100 15.6 193/1.3

Okay google airplane mode on. 100 16.9 219/1.1

Okay google turn on wireless hot spot. 100 14.7 280/1.6

Okay google read last sms from boss. 100 15.1 323/1.4

Echo open the front door. 100 17.2 193/1.0

Echo turn off the light. 100 17.3 347/1.5

Okay google call one one zero one one

nine one two zero.
100 14.8 387/1.7

Echo ask capital one to make a credit

card payment.
100 15.8 379/1.9

5.2 Effectiveness

WTA Attack. In this WTA attack, we directly feed the

generated adversarial songs to Kaldi using its exposed

APIs, which accept raw audio file as input. Particularly,

we injected each command into each of the downloaded

26 songs using the approach proposed in Section 4.2. To-

tally we got more than 200 adversarial songs in the “WAV”

format and sent them to Kaldi directly for recognition. If

Kaldi successfully identified the command injected inside,

we denote the attack as successful.

Table 2 shows the WTA attack results. Each command

can be recognized by Kaldi correctly. The success rate

100% means Kaldi can decode every word in the desired

command correctly. The success rate is calculated as the

ratio of the number of words successfully decoded and

the number of words in the desired command. Note in the

case that the decoded word is only one character different

than that in the desired command, we consider the word

is not correctly recognized.

For each adversarial song, we further calculated the

average signal-noise ratio (SNR) against the original song

as shown in Table 2. SNR is a parameter widely used

to quantify the level of a signal power to noise, so we

use it here to measure the distortion of the adversarial

sample over the original song. We then use the following

equation SNR(dB) = 10log10(Px(t)/Pδ (t)) to obtain SNR,

where the original song x(t) is the signal while the per-

turbation δ (t) is the noise. Larger SNR value indicates a

smaller perturbation. Based on the results in Table 2, the

SNR ranges from 14∼18.6 dB, indicating that the pertur-

bation in the original song is less than 4%. Therefore, the

perturbation should be too slight to be noticed.

WAA Attack. To practically attack Kaldi over the air,

the ideal case is to find a commercial IVC device imple-

mented based on Kaldi and play our adversarial samples

against the device. However, we are not aware of any

such IVC device, so we simulate a pseudo IVC device

based on Kaldi. In particular, the adversarial samples are

played by speakers over the air. We use the recording

functionality of iPhone 6S to record the audio, which is

sent to Kaldi API to decode. Overall, such a pseudo IVC

device is built using the microphone in iPhone 6S as the

audio recorder, and Kaldi system to decode the audio.

We conducted the practical WAA attack in a meeting

room (16 meter long, 8 meter wide, and 4 meter tall).

The songs were played using three different speakers in-

cluding a JBL clip2 portable speaker, an ASUS laptop

and a SENMATE broadcast equipment [16], to examine

the effectiveness of the injected random noise. All of

the speakers are easy to obtain and carry. The distance

between the speaker and the pseudo IVC device (i.e., the

microphone of the iPhone 6S) was set at 1.5 meters. We

chose two commands as in Table 3, and generated adver-

sarial samples. Then we played them over the air using

those three different speakers and used the iPhone 6S to

record the audios, which were sent to Kaldi to decode.

Table 3 shows the WAA attack results. For both of the

two commands, JBL speaker overwhelms the other two

with the success rate up to 96%, which might indicate its

sound quality is better than the other two. All the SNRs

are below 2 dB, which indicates slightly bigger perturba-

tion to the original songs due to the random noise from

the signal’s point of view. Below we will evaluate if such

“bigger” perturbation is human-noticeable by conducting

a survey.

Human comprehension from the survey. To evaluate

the effectiveness of hiding the desired command in the

song, we conducted a survey on Amazon Mechanical Turk



Table 3: WAA attack results.

Command Speaker Success rate (%) SNR (dB) Efficiency (frames/hours)
Echo ask capital one JBL speaker 90 1.7

to make a credit card ASUS Laptop 82 1.7 379/2.0

card payment. SENMATE Broadcast 72 1.7

Okay google call one JBL speaker 96 1.3

one zero one one nine ASUS Laptop 60 1.3 400/1.8

one two zero. SENMATE Broadcast 70 1.3

(MTurk) [2], an online marketplace for crowdsourcing

intelligence. We recruited 204 individuals to participate

in our survey6. Each participant was asked to listen to

26 adversarial samples, each lasting for about 20 seconds

(only about four or five seconds in the middle is crafted to

contain the desired command.). A series of questions re-

garding each audio need to be answered, e.g., (1) whether

they have heard the original song before; (2) whether they

heard anything abnormal than a regular song (The four

options are no, not sure, noisy, and words different than
lyrics); (3) if choosing noisy option in (2), where they

believe the noise comes from, while if choosing words
different than lyrics option in (2), they are asked to write

down those words, and how many times they listened to

the song before they can recognize the words.

Table 4: Human comprehension of the WTA samples.

Music
Classification

Listened
(%)

Abnormal
(%)

Recognize
Command (%)

Soft Music 13 15 0

Rock 33 28 0

Popular 32 26 0

Rap 41 23 0

The entire survey lasts for about five to six minutes.

Each participant is compensated $0.3 for successfully

completing the study, provided they pass the attention

check question to motivate the participants concentrate on

the study. Based on our study, 63.7% of the participants

are in the age of 20∼40 and 33.3% are 40∼60 years old,

and 70.6% of them use IVC devices (e.g., Amazon Echo,

Google home, Smartphone, etc.) everyday.

Table 4 shows the results of the human comprehension

of our WTA samples. We show the average results for

songs belonging to the same category. The detailed re-

sults for each individual song can be referred to in Table 7

in Appendix. Generally, the songs in soft music cate-

gory are the best candidates for the carrier of the desired

command, with as low as 15% of participants noticed the

6The survey will not cause any potential risks to the participants

(physical, psychological, social, legal, etc.). The questions in our survey

do not involve any confidential information about the participants. We

obtained the IRB Exempt certificates from our institutes.

abnormality. None of the participants could recognize any

word of the desired command injected in the adversarial

samples of any category. Table 5 demonstrates the results

of the human comprehension of our WAA samples. On

average, 40% of the participants believed the noise was

generated by the speaker or like radio, while only 2.2%

of them thought the noise from the samples themselves.

In addition, less than 1% believed that there were other

words except the original lyrics. However, none of them

successfully identified any word even repeating the songs

several times.

5.3 Towards the Transferability
Finally, we assess whether the proposed CommanderSong

can be transfered to other ASR platforms.

Transfer from Kaldi to iFLYTEK. We choose iFLY-

TEK ASR system as the target of our transfer, due to its

popularity. As one of the top five ASR systems in the

world, it possesses 70% of the market in China. Some

applications supported by iFLYTEK and their downloads

on Google Play as well as the number of worldwide users

are listed in Table 8 in Appendix. In particular, iFLY-
TEK Input is a popular mobile voice input method, which

supports mandarin, English and personalized input [12].

iFLYREC is an online service offered by iFLYTEK to

convert audio to text [10]. We use them to test the trans-

ferability of our WAA attack samples, and the success

rates of different commands are shown in Table 6. Note

Table 5: Human comprehension of the WAA samples.

Song Name Listened
(%)

Abnormal
(%)

Noise-
speaker

(%)

Noise-
song
(%)

Did You Need

It
15 67 42 1

Outlaw of

Love
11 63 36 2

The Saltwater

Room
27 67 39 3

Sleepwalker 13 67 41 0

Underneath 13 68 45 3

Feeling Good 38 59 36 4

Average 19.5 65.2 40 2.2



Table 6: Transferability from Kaldi to iFLYTEK.

Command iFLYREC
(%)

iFLYTEK
Input (%)

Airplane mode on. 66 0

Open the door. 100 100

Good night. 100 100

that WAA audio samples are directly fed to iFLYREC to

decode. Meanwhile, they are played using Bose Com-

panion 2 speaker towards iFLYTEK Input running on

smartphone LG V20, or using JBL speaker towards iFLY-
TEK Input running on smartphone Huawei honor 8/MI

note3/iPhone 6S. Those adversarial samples containing

commands like open the door or good night can achieve

great transferability on both platforms. However, the com-

mand airplane mode on only gets 66% success rate on

iFLYREC, and 0 on iFLYTEK Input.

Transferability from Kaldi to DeepSpeech. We also try

to transfer CommanderSong from Kaldi to DeepSpeech,

which is an open source end-to-end ASR system. We

directly fed several adversarial WTA and WAA attack

samples to DeepSpeech, but none of them can be decoded

correctly. As Carlini et al. have successfully modified any

audio into a command recognizable by DeepSpeech [23],

we intend to leverage their open source algorithm to ex-

amine if it is possible to generate one adversarial sample

against both two platforms. In this experiment, we started

by 10 adversarial samples generated by CommanderSong,

either WTA or WAA attack, integrating commands like

Okay google call one one zero one one nine one two zero,

Echo open the front door, and Echo turn off the light. We

applied their algorithm to modify the samples until Deep-

Speech can decode the target commands correctly. Then

we tested such newly generated samples against Kaldi as

WTA attack, and Kaldi can still successfully recognize

them. We did not perform WAA attack since their algo-

rithm targeting DeepSpeech cannot achieve attacks over

the air.

The preliminary evaluations on transferability give us

the opportunities to understand CommanderSongs and for

designing systematic approach to transfer in the future.

5.4 Automated Spreading
Since our WAA attack samples can be used to launch the

practical adversarial attack against ASR systems, we want

to explore the potential channels that can be leveraged to

impact a large amount of victims automatically.

Online sharing. We consider the online sharing plat-

forms like YouTube to spread CommanderSong. We

picked up one five-second adversarial sample embedded

with the command “open the door” and applied Windows

Movie Maker software to make a video, since YouTube

only supports video uploading. The sample was repeated

four times to make the full video around 20 seconds. We

then connected our desktop audio output to Bose Com-

panion 2 speaker and installed iFLYTEK Input on LG V20

smartphone. In this experiment, the distance between the

speaker and the phone can be up to 0.5 meter, and iFLY-
TEK Input can still decode the command successfully.

Radio broadcasting. In this experiment, we used

HackRF One [8], a hardware that supports Software De-

fined Radio (SDR) to broadcast our CommanderSong at

the frequency of FM 103.4 MHz, simulating a radio sta-

tion. We setup a radio at the corresponding frequency,

so it can receive and play the CommanderSong. We ran

the WeChat7 application and enabled the iFLYTEK Input
on different smartphones including iPhone 6S, Huawei

Honor 8 and XiaoMi MI Note3. iFLYTEK Input can

always successfully recognize the command “open the
door” from the audio played by the radio and display it

on the screen.

5.5 Efficiency

We also evaluate the cost of generating CommanderSong

in the aspect of the required time. For each command,

we record the time to inject it into different songs and

compute the average. Since the time required to craft also

depends on the length of the desired command, we define

the efficiency as the ratio of the number of frames of the

desired command and the required time. Table 2 and Ta-

ble 3 show the efficiency of generating WTA and WAA

samples for different commands. Most of those adversar-

ial samples can be generated in less than two hours, and

some simple commands like “Echo open the front door”

can be done within half an hour. However, we do notice

that some special words (such as GPS and airplane) in

the command make the generation time longer. Probably

those words are not commonly used in the training process

of the “ASpIRE model” of Kaldi, so generating enough

phonemes to represent the words is time-consuming. Fur-

thermore, we find that, for some songs in the rock cate-

gory such as “Bang bang” and “Roaked”, it usually takes

longer to generate the adversarial samples for the same

command compared with the songs in other categories,

probably due to the unstable rhythm of them.

6 Understanding the Attacks

We try to deeply understand the attacks, which could po-

tentially help to derive defense approaches. We raise some

7WeChat is the most popular instant messaging application in China,

with approximately 963,000,000 users all over the world by June

2017 [15].



Figure 4: SNR impacts on correlation of the audios and

the success rate of adversarial audios.

questions and perform further analysis on the attacks.

In what ways does the song help the attack? We use

songs as the carrier of commands to attack ASR sys-

tems. Obviously, one benefit of using a song is to prevent

listeners from being aware of the attack. Also Comman-

derSong can be easily spread through Youtube, radio, TV,

etc. Does the song itself help generate the adversarial

audio samples? To answer this question, we use a piece

of silent audio as the “carrier” to generate Commander-

Song Acs (WAA attack), and test the effectiveness of it.

The results show that Acs can work, which is aligned with

our findings – a random song can serve as the “carrier”

because a piece of silent audio can be viewed as a special

song.

However, after listening to Acs, we find that Acs sounds

quite similar to the injected command, which means any

user can easily notice it, so Acs is not the adversarial sam-

ples we desire. Note that, in our human subject study,

none of the participants recognized any command from

the generated CommanderSongs. We assume that some
phonemes or even smaller units in the original song work
together with the injected small perturbations to form the
target command. To verify this assumption, we prepare a

song As and use it to generate the CommanderSong Acs.

Then we calculate the difference Δ(As,Acs) between them,

and try to attack ASR systems using Δ(As,Acs). However,

after several times of testing, we find that Δ(As,Acs) does

not work, which indicates the pure perturbations we in-

jected cannot be recognized as the target commands.

Recall that in Table 5, the songs in the soft music

category are proven to be the best carrier, with lowest

abnormality identified by participants. Based on the find-

ings above, it appears that such songs can better aligned

with the phonemes or smaller “units” in the target com-

mand to help the attack. This is also the reason why

Δ(As,Acs) cannot directly attack successfully: the “units”

Figure 5: Explaination of Kaldi and human recognition

of the audios.

in the song combined with Δ(As,Acs) together construct

the phonemes of the target command.

What is the impact of noise in generating adversar-
ial samples? As mentioned early, we build a generic

random noise model to perform the WAA attack over

the air. In order to understand the impact of the noise

in generating adversarial samples, we crafted Comman-

derSong using noises with different amplitude values.

Then we observed the differences between the Comman-

derSong and the original song, the differences between

the CommanderSong and the pure command audio, and

the success rates of the CommanderSong to attack. To

characterize the difference, we leverage Spearman’s rank

correlation coefficient [46] (Spearman’s rho for short)

to represent the similarity between two pieces of audio.

Spearman’s rho is widely used to represent the corre-

lation between two variables, and can be calculated as

follows: r(X ,Y ) =Cov(X ,Y )/
√

Var[X ]Var[Y ], where X
and Y are the MFCC features of the two pieces of audio.

Cov(X ,Y ) represents the covariance of X and Y. Var[X ]
and Var[Y ] are the variances of X and Y respectively.

The results are shown in Figure 4. The x-axis in the

figure shows the SNR (in dB) of the noise, and the y-axis

gives the correlation. From the figure, we find that the

correlation between the CommanderSong and the original

song (red line) decreases with SNR. It means that the

CommanderSong sounds less like the original song when

the amplitude value of the noise becomes larger. This

is mainly because the original song has to be modified

more to find a CommanderSong robust enough against the

introduced noise. On the contrary, the CommanderSong

becomes more similar with the target command audio

when the amplitude values of the noise increases (i.e.,

decrease of SNR in the figure, blue line), which means

that the CommanderSong sounds more like the target

command. The success rate (black dotted line) also in-

creases with the decrease of SNR. We also note that, when



Figure 6: Audio turbulence defense.

SNR = 4 dB, the success rate could be as high as 88%.

Also the correlation between CommanderSong and the

original song is 90%, which indicates a high similarity.

Figure 5 shows the results from another perspective.

Suppose the dark blue circle is the set of audios that

can be recognized as commands by ASR systems, while

the light blue circle and the red one represent the sets

of audio recognized as commands and songs by human

respectively. At first, the original song is in the red circle,

which means that neither ASR systems nor human being

recognize any command inside. WTA attack slightly

modifies the song so that the open source system Kaldi

can recognize the command while human cannot. After

noises are introduced to generate CommanderSong for

WAA attacks, CommanderSong will fall into the light

blue area step by step, and in the end be recognized by

human. Therefore, attackers can choose the amplitude

values of noise to balance between robustness to noise

and identifiability by human users.

7 Defense

We propose two approaches to defend against Comman-

derSong: Audio turbulence and Audio squeezing. The

first defense is effective against WTA, but not WAA; while

the second defense works against both attacks.

Audio turbulence. From the evaluation, we observe that

noise (e.g., from speaker or background) decreases the

success rate of CommanderSong while impacts little on

the recognition of audio command. So our basic idea

is to add noise (referred to as turbulence noise An) to

the input audio AI before it is received by the ASR sys-

tem, and check whether the resultant audio AI +©An can

be interpreted as other words. Particularly, as shown in

Figure 6, AI is decoded as text1 by the ASR system.

Then we add An to AI and let the ASR system extract

the text text2 from AI +©An. If text1 �=text2, we say

that the CommanderSong is detected.

We did experiments using this approach to test the ef-

fectiveness of such defense. The target command “open

the door” was used to generate a CommanderSong. Fig-

ure 7 shows the result. The x-axis shows the SNR (AI to

An), and the y-axis shows the success rate. We found that

the success rate of WTA dramatically drops when SNR

Figure 7: The results of audio turbulence defense.

decreases. When SNR = 15 dB, WTA almost always fails

and AI can still be successfully recognized, which means

this approach works for WTA. However, the success rate

of WAA is still very high. This is mainly because Com-

manderSongs for WAA is generated using random noises,

which is robust against turbulence noise.

Audio squeezing. The second defense is to reduce the

sampling rate of the input audio AI (just like squeezing the

audio). Instead of adding An in the defense of audio tur-

bulence, we downsample AI (referred to as D(AI)). Still,

ASR systems decode AI and D(AI), and get text1 and

text2 respectively. If text1 �=text2, the Commander-

Song is detected. Similar to the previous experiment, we

evaluate the effectiveness of this approach. The results are

shown in Figure 8. The x-axis shows the ratio (1/M) of

downsampling (M is the downsampling factor or decima-

tion factor, which means that the original sampling rate is

M times of the downsampled rate). When 1/M = 0.7 (if

the sample rate is 8000 samples/second, the downsampled

rate is 5600 samples/second), the success rates of WTA

and WAA are 0% and 8% respectively. AI can still be

successful recognized at the rate of 91%. This means that

Audio squeezing is effective to defend against both WTA

and WAA.

8 Related Work

Attack on ASR system. Prior to our work, many re-

searchers have devoted to security issues about speech

controllable systems [36, 35, 26, 41, 51, 22, 53, 23]. De-

nis et al. found the vulnerability of analog sensor and

injected bogus voice signal to attack the microphone [36].

Kasmi et al. stated that, by leveraging intentional electro-

magnetic interference on headset cables, voice command

could be injected and carried by FM signals which is

further received and interpreted by smart phones [35].



Figure 8: Audio squeezing defense result.

Diao et al. demonstrated that, through permission by-

passing attack in Android smart phones, voice commands

could be played using apps with zero permissions [26].

Mukhopadhyay et al. considered voice impersonation

attacks to contaminate a voice-based user authentication

system [41]. They reconstructed the victims voice model

from the victims voice data, and launched attacks that can

bypass voice authentication systems. Different from these

attacks, we are attacking the machine learning models of

ASR systems.

Hidden voice command [22] launched both black box

(i.e., inverse MFCC) and white box (i.e., gradient decent)

attacks against ASR systems with GMM-based acous-

tic models. Different from this work, our target is a

DNN-based ASR system. Recently, the authors posted the

achievement that can construct targeted audio adversar-

ial examples on DeepSpeech, an end-to-end open source

ASR platform [23]. To perform the attack, the adver-

sary needs to directly upload the adversarial WAV file to

the speech recognition system. Our attacks on Kaldi are

concurrent to their work, and our attack approaches are in-

dependent to theirs. Moreover, our attacks succeed under

a more practical setting that let the adversarial audio be

played over the air. The recent work DolphinAttack [53]

proposed a completely inaudible voice attack by modu-

lating commands on ultrasound carriers and leveraging

microphone vulnerabilities to attack. As noted by the

authors, such attack can be eliminated by filtering out

ultrasound carrier (e.g., iPhone 6 Plus). Differently, our

attack uses songs instead of ultrasound as the carriers,

making the attack harder to defend.

Adversarial research on machine learning. Besides

attacking speech recognition systems, there has been sub-

stantial work on adversarial machine learning examples

towards physical world. Kurakin et al. [37] proved it

is doable that Inception v3 image classification neural

network could be compromised by adversarial images.

Brown et al. [21] showed by adding an universal patch to

an image they could fool the image classifiers successfully.

Evtimov et al. [27] proposed a general algorithm which

can produce robust adversarial perturbations into images

to overcome physical condition in real world. They suc-

cessfully fooled road sign classifiers to mis-classify real

Stop Sign. Different from them, our study targets speech

recognition system.

Defense of Adversarial on machine learning. Defend-

ing against adversarial attacks is known to be a challeng-

ing problem. Existing defenses include adversarial train-

ing and defensive distillation. Adversarial training [39]

adds the adversarial examples into the model’s training set

to increase its robustness against these examples. Defen-

sive distillation [33] trains the model with probabilities of

different class labels supported by an early model trained

on the same task. Both defenses perform a kind of gra-

dient masking [45] which increases the difficulties for

the adversary to compute the gradient direction. In [29],

Dawn Song attempted to combine multiple defenses in-

cluding feature squeezing and the specialist to construct

a larger strong defense. They stated that defenses should

be evaluated by strong attacks and adaptive adversarial

examples. Most of these defenses are effective for white

box attacks but not for black box ones. Binary classifi-

cation is another simple and effective defense for white

box attacks without any modifications of the underlying

systems. A binary classifier is built to separate adversarial

examples apart from the clean data. Similar as adversarial

training and defensive distillation, this defense suffers

from generalization limitation. In this paper, we propose

two novel defenses against CommanderSong attack.

9 Conclusion

In this paper, we perform practical adversarial attacks

on ASR systems by injecting “voice” commands into

songs (CommanderSong). To the best of our knowledge,

this is the first systematical approach to generate such

practical attacks against DNN-based ASR system. Such

CommanderSong could let ASR systems execute the com-

mand while being played over the air without notice by

users. Our evaluation shows that CommanderSong can be

transferred to iFLYTEK, impacting popular apps such as

WeChat, Sina Weibo, and JD with billions of users. We

also demonstrated that CommanderSong can be spread

through YouTube and radio. Two approaches (audio turbu-

lence and audio squeezing) are proposed to defend against

CommanderSong.
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Appendix

Table 7: The detailed results of individual song in human comprehension survey for WTA samples. When we were

checking the survey results from MTurk, we found the average familiarity of MTurk workers towards our songs is not

as good as we expected. So streaming counts from Spotify are also listed in the table, as we want to show the popularity

of our sample songs. The song Selling Brick in Street is not in Spotify database so we can not provide the count for it.

Music Clas-
sification Song Name Spotify

Streaming Count
Listened

(%)
Abnormal

(%)
Recognize

Command (%)
Heart and Soul 13,749,471 15% 8% 0

Castle in the Sky 2,332,348 9% 6% 0

Soft Music A Comme Amour 1,878,899 14% 18% 0

Mariage D’amour 337,486 17% 33% 0

Lotus 49,443,256 11% 12% 0

Average 13,548,292 13% 15% 0

Bang Bang 532,057,658 52% 24% 0

Soaked 29,734 13% 32% 0

Rock Gold 11,614,629 14% 41% 0

We are never Getting back together 113,806,946 66% 38% 0

When can I See You again 26,463,993 20% 9% 0

Average 136,794,562 33% 28% 0

Love Story 109,952,344 49% 24% 0

Hello Seattle 9,850,328 29% 16% 0

Popular Good Time 125,125,693 48% 32% 0

To the Sky 4,860,627 27% 30% 0

A Loaded Smile 658,814 8% 26% 0

Average 50,089,561 32% 26% 0

Rap God 349,754,768 43% 32% 0

Let Me Hold You 311,569,726 31% 15% 0

Rap Lose Yourself 483,937,007 75% 14% 0

Remember the Name 193,564,886 48% 32% 0

Selling Brick in Street N/A 6% 24% 0

Average 334,706,597 41% 23% 0

Table 8: The detailed information of some sample applications which utilize iFLYTEK as voice input, including

number of downloads from Google Play and total user amount. Since Google Services are not accessible in China

and information of Apple App Store is not collected, the number of users may not be associated with the number of

downloads in Google Play. As shown in the table, each of these applications has over 0.2 billion users in the world.

Application Usage Downloads from
Google Play

Total Users Worldwide
(Billion)

Sina Weibo Social platform 11,000,000 0.53

JD Online shopping 1,000,000 0.27

CMbrowser Searching engine 50,000,000 0.64

Ctrip Travel advice website 1,000,000 0.30

Migu Digital Voice assistant 5,000 0.46

WeChat Chatting, Social 100,000,000 0.96

iFLYTEK Input Typing, Voice Input 500,000 0.5


